自我监督的代表学习使对比学习的进步推动了显着的跨利赛,这旨在学习嵌入附近积极投入对的转变,同时推动负对的对。虽然可以可靠地生成正对(例如,作为相同图像的不同视图),但是难以准确地建立负对对,定义为来自不同图像的样本,而不管它们的语义内容或视觉功能如何。对比学习中的一个基本问题正在减轻假底片的影响。对比假否定引起了两个代表学习的关键问题:丢弃语义信息和缓慢的收敛。在本文中,我们提出了识别错误否定的新方法,以及减轻其效果的两种策略,即虚假的消极消除和吸引力,同时系统地执行严格的评估,详细阐述了这个问题。我们的方法表现出对基于对比学习的方法的一致性改进。没有标签,我们在想象中的1000个语义课程中识别出具有40%的精度,并且在使用1%标签的FINETUNING时,在先前最先进的最先进的前1个精度的绝对提高5.8%的绝对提高。我们的代码可在https://github.com/gogle-research/fnc上获得。
translated by 谷歌翻译
In this paper, we propose a novel technique, namely INVALIDATOR, to automatically assess the correctness of APR-generated patches via semantic and syntactic reasoning. INVALIDATOR reasons about program semantic via program invariants while it also captures program syntax via language semantic learned from large code corpus using the pre-trained language model. Given a buggy program and the developer-patched program, INVALIDATOR infers likely invariants on both programs. Then, INVALIDATOR determines that a APR-generated patch overfits if: (1) it violates correct specifications or (2) maintains errors behaviors of the original buggy program. In case our approach fails to determine an overfitting patch based on invariants, INVALIDATOR utilizes a trained model from labeled patches to assess patch correctness based on program syntax. The benefit of INVALIDATOR is three-fold. First, INVALIDATOR is able to leverage both semantic and syntactic reasoning to enhance its discriminant capability. Second, INVALIDATOR does not require new test cases to be generated but instead only relies on the current test suite and uses invariant inference to generalize the behaviors of a program. Third, INVALIDATOR is fully automated. We have conducted our experiments on a dataset of 885 patches generated on real-world programs in Defects4J. Experiment results show that INVALIDATOR correctly classified 79% overfitting patches, accounting for 23% more overfitting patches being detected by the best baseline. INVALIDATOR also substantially outperforms the best baselines by 14% and 19% in terms of Accuracy and F-Measure, respectively.
translated by 谷歌翻译
State space models (SSMs) have demonstrated state-of-the-art sequence modeling performance in some modalities, but underperform attention in language modeling. Moreover, despite scaling nearly linearly in sequence length instead of quadratically, SSMs are still slower than Transformers due to poor hardware utilization. In this paper, we make progress on understanding the expressivity gap between SSMs and attention in language modeling, and on reducing the hardware barrier between SSMs and attention. First, we use synthetic language modeling tasks to understand the gap between SSMs and attention. We find that existing SSMs struggle with two capabilities: recalling earlier tokens in the sequence and comparing tokens across the sequence. To understand the impact on language modeling, we propose a new SSM layer, H3, that is explicitly designed for these abilities. H3 matches attention on the synthetic languages and comes within 0.4 PPL of Transformers on OpenWebText. Furthermore, a hybrid 125M-parameter H3-attention model that retains two attention layers surprisingly outperforms Transformers on OpenWebText by 1.0 PPL. Next, to improve the efficiency of training SSMs on modern hardware, we propose FlashConv. FlashConv uses a fused block FFT algorithm to improve efficiency on sequences up to 8K, and introduces a novel state passing algorithm that exploits the recurrent properties of SSMs to scale to longer sequences. FlashConv yields 2$\times$ speedup on the long-range arena benchmark and allows hybrid language models to generate text 1.6$\times$ faster than Transformers. Using FlashConv, we scale hybrid H3-attention language models up to 1.3B parameters on the Pile and find promising initial results, achieving lower perplexity than Transformers and outperforming Transformers in zero- and few-shot learning on a majority of tasks in the SuperGLUE benchmark.
translated by 谷歌翻译
Early detection of relevant locations in a piece of news is especially important in extreme events such as environmental disasters, war conflicts, disease outbreaks, or political turmoils. Additionally, this detection also helps recommender systems to promote relevant news based on user locations. Note that, when the relevant locations are not mentioned explicitly in the text, state-of-the-art methods typically fail to recognize them because these methods rely on syntactic recognition. In contrast, by incorporating a knowledge base and connecting entities with their locations, our system successfully infers the relevant locations even when they are not mentioned explicitly in the text. To evaluate the effectiveness of our approach, and due to the lack of datasets in this area, we also contribute to the research community with a gold-standard multilingual news-location dataset, NewsLOC. It contains the annotation of the relevant locations (and their WikiData IDs) of 600+ Wikinews articles in five different languages: English, French, German, Italian, and Spanish. Through experimental evaluations, we show that our proposed system outperforms the baselines and the fine-tuned version of the model using semi-supervised data that increases the classification rate. The source code and the NewsLOC dataset are publicly available for being used by the research community at https://github.com/vsuarezpaniagua/NewsLocation.
translated by 谷歌翻译
In heterogeneous networks (HetNets), the overlap of small cells and the macro cell causes severe cross-tier interference. Although there exist some approaches to address this problem, they usually require global channel state information, which is hard to obtain in practice, and get the sub-optimal power allocation policy with high computational complexity. To overcome these limitations, we propose a multi-agent deep reinforcement learning (MADRL) based power control scheme for the HetNet, where each access point makes power control decisions independently based on local information. To promote cooperation among agents, we develop a penalty-based Q learning (PQL) algorithm for MADRL systems. By introducing regularization terms in the loss function, each agent tends to choose an experienced action with high reward when revisiting a state, and thus the policy updating speed slows down. In this way, an agent's policy can be learned by other agents more easily, resulting in a more efficient collaboration process. We then implement the proposed PQL in the considered HetNet and compare it with other distributed-training-and-execution (DTE) algorithms. Simulation results show that our proposed PQL can learn the desired power control policy from a dynamic environment where the locations of users change episodically and outperform existing DTE MADRL algorithms.
translated by 谷歌翻译
This paper aims to improve the Warping Planer Object Detection Network (WPOD-Net) using feature engineering to increase accuracy. What problems are solved using the Warping Object Detection Network using feature engineering? More specifically, we think that it makes sense to add knowledge about edges in the image to enhance the information for determining the license plate contour of the original WPOD-Net model. The Sobel filter has been selected experimentally and acts as a Convolutional Neural Network layer, the edge information is combined with the old information of the original network to create the final embedding vector. The proposed model was compared with the original model on a set of data that we collected for evaluation. The results are evaluated through the Quadrilateral Intersection over Union value and demonstrate that the model has a significant improvement in performance.
translated by 谷歌翻译
This case study investigates the extent to which a language model (GPT-2) is able to capture native speakers' intuitions about implicit causality in a sentence completion task. We first reproduce earlier results (showing lower surprisal values for pronouns that are congruent with either the subject or object, depending on which one corresponds to the implicit causality bias of the verb), and then examine the effects of gender and verb frequency on model performance. Our second study examines the reasoning ability of GPT-2: is the model able to produce more sensible motivations for why the subject VERBed the object if the verbs have stronger causality biases? We also developed a methodology to avoid human raters being biased by obscenities and disfluencies generated by the model.
translated by 谷歌翻译
Collecting large-scale medical datasets with fully annotated samples for training of deep networks is prohibitively expensive, especially for 3D volume data. Recent breakthroughs in self-supervised learning (SSL) offer the ability to overcome the lack of labeled training samples by learning feature representations from unlabeled data. However, most current SSL techniques in the medical field have been designed for either 2D images or 3D volumes. In practice, this restricts the capability to fully leverage unlabeled data from numerous sources, which may include both 2D and 3D data. Additionally, the use of these pre-trained networks is constrained to downstream tasks with compatible data dimensions. In this paper, we propose a novel framework for unsupervised joint learning on 2D and 3D data modalities. Given a set of 2D images or 2D slices extracted from 3D volumes, we construct an SSL task based on a 2D contrastive clustering problem for distinct classes. The 3D volumes are exploited by computing vectored embedding at each slice and then assembling a holistic feature through deformable self-attention mechanisms in Transformer, allowing incorporating long-range dependencies between slices inside 3D volumes. These holistic features are further utilized to define a novel 3D clustering agreement-based SSL task and masking embedding prediction inspired by pre-trained language models. Experiments on downstream tasks, such as 3D brain segmentation, lung nodule detection, 3D heart structures segmentation, and abnormal chest X-ray detection, demonstrate the effectiveness of our joint 2D and 3D SSL approach. We improve plain 2D Deep-ClusterV2 and SwAV by a significant margin and also surpass various modern 2D and 3D SSL approaches.
translated by 谷歌翻译
According to the World Federation of the Deaf, more than two hundred sign languages exist. Therefore, it is challenging to understand deaf individuals, even proficient sign language users, resulting in a barrier between the deaf community and the rest of society. To bridge this language barrier, we propose a novel multilingual communication system, namely MUGCAT, to improve the communication efficiency of sign language users. By converting recognized specific hand gestures into expressive pictures, which is universal usage and language independence, our MUGCAT system significantly helps deaf people convey their thoughts. To overcome the limitation of sign language usage, which is mostly impossible to translate into complete sentences for ordinary people, we propose to reconstruct meaningful sentences from the incomplete translation of sign language. We also measure the semantic similarity of generated sentences with fragmented recognized hand gestures to keep the original meaning. Experimental results show that the proposed system can work in a real-time manner and synthesize exquisite stunning illustrations and meaningful sentences from a few hand gestures of sign language. This proves that our MUGCAT has promising potential in assisting deaf communication.
translated by 谷歌翻译
使用通过组成可逆层获得的地图进行标准化模型复杂概率分布。特殊的线性层(例如蒙版和1x1卷积)在现有体系结构中起着关键作用,因为它们在具有可拖动的Jacobians和倒置的同时增加表达能力。我们提出了一个基于蝴蝶层的新的可逆线性层家族,理论上捕获复杂的线性结构,包括排列和周期性,但可以有效地倒置。这种代表力是我们方法的关键优势,因为这些结构在许多现实世界数据集中很常见。根据我们的可逆蝴蝶层,我们构建了一个新的称为蝴蝶流的归一化流量模型。从经验上讲,我们证明蝴蝶不仅可以在MNIST,CIFAR-10和Imagenet 32​​x32等自然图像上实现强密度估计结果,而且还可以在结构化数据集中获得明显更好的对数可能性,例如Galaxy图像和Mimic-III患者群体 - - 同时,在记忆和计算方面比相关基线更有效。
translated by 谷歌翻译